Sea Empire: Winter lords
Verifiziertes Spiel
- Platform: Android
- Aktualisiert: 24.01.2025
- Android Spielversion: 5.0
-
Language:
- Aktuelle Version: 2021.6.30
- Google Play: -
„Begeben Sie sich in Sea Empire: Winter Lords auf die Eroberung nahegelegener Inseln, indem Sie eine beeindruckende Flotte aufbauen. Dieses Spiel besticht durch einfache Grafiken und bietet verschiedene Schiffsoptionen.“<|endoftext|><|endoftext|>
# 2006 AMC 12B Probleme/Problem 1.
(Weitergeleitet von 2006 AMC 12B Probleme / Problem 1)
## Problem.
Was ist der Wert von $2^{-3}+3^{-3}+4^{-3}+...+2006^{-3}+2007^{-3}$?
$\text {(A) } \frac{2007}{2^3} \qquad \text {(B) } \frac{2007^2}{2^3} \qquad \text {(C) } \frac {2007^2+2007}{2^3} \qquad \text {(D) } \frac{2007^2+2007}{2^6} \qquad \text {(E) } \frac{2007^2+2007}{2^7}$
## Lösung.
Wir können den Ausdruck umschreiben als
\begin{align*} 2^{-3}+3^{-3}+4^{-3}+...+2006^{-3}+2007^{-3} &= \left(2 ^{-3}+3^{-3}+4^{-3}+...+2006^{-3}\right) + 2007^{-3} \\ &= \left(\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{2006^3} \right) + \frac{1}{2007^3} \\ &= \frac{1}{8}+\frac{1}{27}+\frac{1}{64}+...+\ frac{1}{2006^3} + \frac{1}{2007^3} \\ &= \left(\frac{1}{2^3}\right)^3+\left(\frac{1}{3^3}\right)^ 3+\left(\frac{1}{4^3}\right)^3+...+\left(\frac{1}{2006^3}\right)^3 + \left(\frac{1}{2007^3}\right)^3 \\ &= \left(\frac{1}{2^3}+\frac{1}{3^3}+\frac{ 1}{4^3}+...+\frac{1}{2006^3}+\frac{1}{2007^3}\right)^3 \\ &= \left(\frac{1}{8}+\frac{1}{27}+\frac{1}{64}+...+\frac{1}{2006^3}+\frac{1} {2007^3}\right)^3 \\ &= \left(\frac{1}{8}+\frac{1}{27}+\frac





